Extensions 1→N→G→Q→1 with N=C2×S32 and Q=C2

Direct product G=N×Q with N=C2×S32 and Q=C2
dρLabelID
C22×S3224C2^2xS3^2144,192

Semidirect products G=N:Q with N=C2×S32 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×S32)⋊1C2 = S3×D12φ: C2/C1C2 ⊆ Out C2×S32244+(C2xS3^2):1C2144,144
(C2×S32)⋊2C2 = D6⋊D6φ: C2/C1C2 ⊆ Out C2×S32244(C2xS3^2):2C2144,145
(C2×S32)⋊3C2 = S3×C3⋊D4φ: C2/C1C2 ⊆ Out C2×S32244(C2xS3^2):3C2144,153
(C2×S32)⋊4C2 = Dic3⋊D6φ: C2/C1C2 ⊆ Out C2×S32124+(C2xS3^2):4C2144,154
(C2×S32)⋊5C2 = C2×S3≀C2φ: C2/C1C2 ⊆ Out C2×S32124+(C2xS3^2):5C2144,186

Non-split extensions G=N.Q with N=C2×S32 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×S32).C2 = S32⋊C4φ: C2/C1C2 ⊆ Out C2×S32124+(C2xS3^2).C2144,115
(C2×S32).2C2 = C4×S32φ: trivial image244(C2xS3^2).2C2144,143

׿
×
𝔽